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The optically active R-hydroxy carbonyl compounds are wide-
spread in natural products and have been frequently used as
convenient building blocks in organic synthesis.1 The asymmetric
carbonyl-ene reaction of glyoxal derivatives and glyoxylate could
provide access to nonracemic γ,δ-unsaturated R-hydroxy carbonyl
compounds which are more synthetically versatile intermediates
by the further transformation of the carbonyl group and carbon-car-
bon double bond. Since the pioneering work of Yamamoto and
co-workers,2 a massive effort has been devoted to the development
of enantioselective carbonyl-ene reactions, and numerous impressive
successes have been recorded.3-5 However, the previous studies
mainly focused on glyoxylate,3 and only a few examples of highly
enantioselective carbonyl-ene reactions with glyoxal derivatives
have been reported.5 Therefore, searching for a highly effective
catalyst system with high enantioselectivity and a broad substrate
scope is still challenging and interesting. As excellent chiral
scaffolds,6,7 N,N′-dioxides could coordinate with many metals7 and
exhibited great potential in many asymmetric reactions. Herein, we
present a novel and efficient chiral catalyst system based on N,N′-
dioxide-nickel(II) complexes for the asymmetric carbonyl-ene
reaction. Excellent enantioselectivities (up to >99% ee) were
obtained for a broad range of substrates including aromatic, aliphatic
glyoxal derivatives, as well as glyoxylate with various alkenes.

Initially, we examined the carbonyl-ene reaction of phenylglyoxal
(1a) and phenylpropene (2a), promoted by the nickel(II)-N,N′-
dioxide complex (Table 1). N,N′-Dioxide L2 derived from aromatic
amine exhibited superior results to L1 based on aliphatic amine
with moderate enantioselectivity (Table 1, entry 1 vs 2). To further
improve the enantioselectivity of the reaction, the steric and
electronic effects of the ligand were examined (Table 1, entries
2-6). As shown in Table 1, ligand with bulkier group at the ortho
position of aniline, such as iso-propyl, could achieve higher
enantioselectivities (up to 99% ee; entry 4 vs entries 2, 3). As for
the chiral backbone moiety, when (S)-pipecolic acid derived N,N′-
dioxide L6 was used instead of the L-proline and (S)-ramipril
derived ones, the yield was dramatically improved (Table 1, entry
6 vs entries 4, 5).

To further improve the efficiency of the reaction, several other
reaction conditions such as solvent and reaction temperature were
investigated (Table 1, entries 7-10).8 As shown in Table 1,
Ni(ClO4)2 and Ni(BF4)2 could give almost the same results in DCE
(Table 1, entries 7, 8). However, the behavior of the catalyst L6-
Ni(BF4)2 and L6-Ni(ClO4)2 at lower catalyst loading was unusual,8

and the best results were obtained with 5 mol% L6-Ni(BF4)2 at 60
°C (Table 1, entries 9, 10). And the catalyst loading could even be
decreased to 1 mol%, while the enantioselectivity was basically

maintained (Table 1, entry 12). Extensive screening showed that
the optimized conditions were 5 mol% L6-Ni(BF4)2 ·6H2O complex
(molar ratio: 1/1), 0.1 mmol of phenylglyoxal, and 0.3 mmol of
phenylpropene in 0.5 mL of DCE (CH2ClCH2Cl) at 60 °C.
Furthermore, this process could tolerate air and moisture.

Under the optimized conditions, a series of glyoxal derivatives
were examined in asymmetric carbonyl-ene reactions with various
alkenes, and the corresponding products were gained in high yields
with excellent ee values in the range of 97->99% (Table 2). It
was noteworthy that this catalyst system exhibited a remarkably
broad substrate scope. Whether the electronic properties or the steric
hindrance of the substituent at the aromatic ring had no obvious
effect on the enantioselectivity (ee values generally >99%; Table
2, entries 1-16). The condensed-ring glyoxal (1-naphthylglyoxal)
reacted smoothly with 2-phenylpropene, giving the desired product
with >99% ee (Table 2, entry 17). Inspiringly, the excellent
enantioselectivities have been achieved for the first time in the
asymmetric carbonyl-ene reaction of heteroaromatic glyoxals and
aliphatic glyoxals (97->99% ee; Table 2, entries 18-21). More-
over, either the 2-methyl and 4-fluoro substituted phenylpropenes

† Key Laboratory of Green Chemistry and Technology.
‡ State Key Laboratory of Biotherapy.

Table 1. Optimization of the Reaction Conditionsa

entry ligand Ni(II) x
(mol%) solvent yield

(%)b
ee

(%)c

1 L1 Ni(ClO4)2 20 CH2Cl2 32 51
2 L2 Ni(ClO4)2 20 CH2Cl2 42 57
3 L3 Ni(ClO4)2 20 CH2Cl2 57 63
4 L4 Ni(ClO4)2 20 CH2Cl2 75 99
5 L5 Ni(ClO4)2 20 CH2Cl2 70 80
6 L6 Ni(ClO4)2 20 CH2Cl2 99 99
7 L6 Ni(ClO4)2 20 DCE 99 >99
8 L6 Ni(BF4)2 20 DCE 99 >99
9d L6 Ni(ClO4)2 5 DCE 95 96
10d L6 Ni(BF4)2 5 DCE 98 >99
11d L6 Ni(BF4)2 2.5 DCE 89 99
12d L6 Ni(BF4)2 1 DCE 83 99

a Unless otherwise noted, the reaction was carried out with 0.1 mmol
of phenylglyoxal and 3.0 equiv of 2-phenylpropene in solvent (0.5 mL)
at 25 °C for 64 h. b Isolated yield. c Determined by chiral HPLC. d The
reaction was performed at 60 °C for 16-32 h.
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or 1,1-dialkyl substituted ethenes (such as 2,4,4-trimethyl-1-pentene
(2d) and 2,3-dimethyl-1-butene (2e)) all proceeded smoothly with
phenylglyoxal in high yields and 98->99% ee (Table 2, entries
22-25). For most glyoxyl derivatives, excellent ee (96-99% ee;
Table 2, data in parentheses) with good yield was obtained using
2.5 mol% even as low as 1 mol% catalyst (for more data, see
Supporting Information).

The scope of the ene methodology was extended successfully
to glyoxylate (Table 2, entries 26-29). While the reaction of various
alkenes (2a, 2b, and 2d) with glyoxylate could achieve excellent
enantioselectivities (up to 99% ee) and high yields, the 2-methyl
substituted phenylpropene (2c) also reacted well but required more
catalyst loading (10 mol%) and a longer time to complete the
reaction (Table 2, entry 28).

In conclusion, we have developed a novel chiral N,N′-dioxide-
nickel(II) complex for the asymmetric carbonyl-ene reaction of both
glyoxal derivatives and glyoxylate. Significant progress has been
obtained with an extremely broad substrate scope, giving chiral
γ,δ-unsaturated R-hydroxy carbonyl compounds in high yields with

excellent enantioselectivities (up to >99% ee). The operational
simplicity, practicability, and mild conditions rendered it an
attractive approach for the asymmetric synthesis of optical γ,δ-
unsaturated R-hydroxy carbonyl compounds. Further studies of the
reaction mechanism and the application of this catalyst to other
reactions are underway.
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Table 2. Substrate Scope for the Catalytic Asymmetric
Carbonyl-Ene Reactiona

entry R1 2 yield (%)b ee (%)c

1 Ph 2a 98 (83) >99 (99)g

2 2-MeC6H4 2a 95 (78) >99 (98)h

3 3-MeC6H4 2a 92 (82) 99 (98)h

4 4-MeC6H4 2a 97 (80) >99 (97)h

5 3-MeOC6H4 2a 91 (78) >99 (98)h

6 4-MeOC6H4 2a 99 (85) >99 (96)g

7 3,4-(MeO)2C6H3 2a 90 (87) >99 (97)h

8 2-ClC6H4 2a 74 >99
9 3-ClC6H4 2a 92 (70) 99 (97)h

10 4-ClC6H4 2a 86 (75) >99 (98)h

11 3,4-Cl2C6H3 2a 92 (75) 99 (99)h

12 2-FC6H4 2a 85 99
13 4-FC6H4 2a 92 (73) >99 (99)h

14 4-BrC6H4 2a 95 (70) 99 (97)h

15 3-NO2C6H4 2a 72 >99
16 4-NO2C6H4 2a 78 >99
17 2-naphthyl 2a 93 (77) >99 (99)h

18 2-furyl 2a 95 (80) >99 (98)g

19 2-thienyl 2a 90 (83) 98 (98)h

20 c-hexyl 2a 80 97
21 Me 2a 75 99
22 Ph 2b 93 (82) >99 (99)h

23e Ph 2c 73 >99
24 Ph 2d 84 98
25e Ph 2e 86 >99
26f OEt 2a 99 99 (S)d

27f OEt 2b 94 97
28e,f OEt 2c 77 99
29f OEt 2d 87 98 (S)d

a Unless otherwise noted, the reaction was carried out with 5 mol%
L6-Ni(BF4)2 ·6H2O, 0.1 mmol of glyoxal derivative (glyoxylate), and
3.0 equiv of alkene in DCE (0.5 mL) at 60 °C for 14-48 h. b Isolated
yield. c Determined by chiral HPLC. d The absolute configuration was
determined by comparison with literature data.3r e With 10 mol%
catalyst. f The reaction was performed at 40 °C. g The results in
parentheses were obtained with 1 mol% catalyst. h The results in
parentheses were obtained with 2.5 mol% catalyst.
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